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On the Numerical Evaluation of the Modified Bessel Function 
of the Third Kind 

I. Introduction 

I. 1. De$nition+s and relevant properties. The modified Bessel function of the 
third kind can be defined by the integral 

K”(z) = 6 e- zcosht cash vt dt, Re z > 0. (1.1) 

Its definition can also be given by using the modified Bessel function of the first 
kind, 

In terms of this function we have 

KY(z) = $7r[(Z+(z) - J,(z))/sin v7r]. (1.3) 

Since I-,(z) = In(z), n = 0, 1, 2 ,..., the right-hand side of (1.3) appears in inde- 
terminate form if v = n. However, the limit of this form as v + n exists and 
agrees with K,(z) given in (I. 1). Clearly we have 

K”(Z) = K-,(z). (1.4) 

Furthermore, if z and v are real, z > 0, 

K(z) > 0, K”‘(Z) < 0. (1.5) 

The Bessel functions of half-integral order can be expressed in terms of ele- 
mentary functions. For v = +, 2 we have 

&2(z) = (7r/2z)‘j2 e-z, K3r2(~) = (rr/2z)‘j2 e-Z(l + l/z). U-6) 

The functions I,,(z) and ei”“KV(z) are two solutions of the difference equation 

Y”,l + (WlY, - Yv-1 = 0. (1.7) 
324 
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Explicitly, we have 

L+dz) + P/d I,(z) - Lb) = 0, W) 

K,+,(z) - w4 K”(Z) - L,(z) = 0. (1.9) 

Formula (1.9) can be used to compute K,,, for n = 2, 3,... when K, and K,,, are 
given. In the forward direction the recurrence formula for K, is numerically stable 
(see Gautschi [5]). 

From (1.2) and (1.3) the following asymptotic formulas are obtained. For small 
1 z 1 we have 

w - w)“/~(~ + l), K(z) - X42)-” Q>, Rev >O. (1.10) 

These formulas also hold for the case that z is fixed and Y -+ co. Hence, 1, and 
eivnKv are two linearly independent solutions of the difference equation (1.7). 

When v is fixed and z + 00 we have the well-known expansions 

Iv(z) = (2.rrz)-li2 ez[l + O(z-l)], K"(z) = (7r/2z)lj2 e-Z[l + O(z-l)], (1.11) 

the first relation holding for 1 arg .z 1 < &rr, and the second one for 1 arg z 1 < 3a/2. 

1.2. Contents of the paper. We give algorithms for the computation of KY(z) 
and K,+,(z). On account of (1.4) and (1.9) and the stability of (1.9) it suffices to 
consider values of v with -+ d Re v < 3. In Section II we describe an algorithm 
for the computation of K,(z) for small values of 1 z I. This algorithm is based on 
representations (1.3) and (1.2). Also, the evaluation of the gamma function is 
discussed; some special approximations of this function are needed in the algorithm 
for small 1 z I. 

Section III is devoted to the computation of K,(z) for moderate or large values 
of 1 z I. In this case the algorithm is based on a combination of algorithms due to 
J. C. P. Miller and F. W. J. Olver. 

In Section IV the algorithms are described in terms of ALGOL 60 procedures. 
There is a vast literature concerning the computation of this Bessel function 

(see for example Luke [8, 9]), especially for large values of I z 1, whereas the 
computation for small values is rather neglected. Moreover, the methods are usually 
restricted to K,(z) for integer values of v. The algorithms described in this paper 
may also be used for the class of confluent hypergeometric functions denoted by 
W, b, 4. 

For the computation of the Bessel function I,,(z) the reader is referred to Amos [2] 
and Gautschi [5, 61. 

Thanks are due to Gert Jan Laan, who tested the ALGOL 60 procedures. 



326 N. M. TEMME 

II. The Computation for Small Values ef [ z i 

11.1. Series representations. Substitution of (1.2) into (1.3) leads to 

K”(Z) = f Ckh , (2.1) 
k=O 

fo = & wv”/w - 4 - w”/m + VI>, (2.2) 

and for general k, 

fk = & WW/W + 1 - v> - (z/W/~(k + 1 + ~11, (2.3) 

ck = (z2/4)“/k! . (2.4) 

By using the well-known property of the gamma function r(z + 1) = zF(z) we 
have for k = 1, 2, 3,... the recurrence relations 

h = (kA--l + Pk-1 + qk--l)/(k2 - v2>, 

po = +(z/q-” T(l + v), Pk = P&k - V), 
qo = Q(Z/2)” r( 1 - v), qk = 4,&k + V)- 

In order to compute Kyfl(z) we write (using (1.3) and (1.8)) 

(2.5) 

(2.6) 

(2.7) 

K+,(z) = ; & L(z) + & V”fl(l) - L+1(4)* (2.8) 

By substitution of (1.2) we obtain 

&+I@) = ; k$o Ck(Pk - k&h (2.9) 

If an algorithm for the gamma function is available&, ,po , and q. can be computed, 
and the remaining Values fk , pk , and qk can be obtained by recursion. 

It should be pointed out that we wish to compute K, , K,,, for -4 < Re v < 3, 
and inspection of (2.2) shows that, if v + 0, an indeterminate form appears in f. 
(and in all fk , but by using (2.5) only f. has to be considered). Analytically, f. can 
be defined in the limit v = 0. However, for small / v /, numerical evaluation off0 
from representation (2.2) will cause a loss of correct significant digits. If I v I is 
small, f. might be expanded in a series x uk(z) vk; in fact this method is suggested 
by Goldstein and Thaler [7]. This series converges for 1 v 1 < 1 (because of the 
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singularity at v = I), but the coefficients C&Z) are not easily obtained. Moreover, 
for small j z 1 convergence of the series is rather poor. 

In order to avoid these troubles we propose the following representation off0 . 

where 

fo = & [rdv) cash II- + r,(v) NW sWcc)/cll, (2.10) 

r,(v) = [l/r(l - v) - l/W + ~)1/(24 
(2.11) 

T2(v) = [l/W - v) + l/W + 41/2, 

and p = v ln(21z). The cancellation for small v may now occur in r, and sinh 
but for these functions the cancellation is better controlled than in f. . For the 
computation of r, and r, the reader is referred to Subsection 11.3. 

11.2. Stability of computation. If 1 z 1 is not too large, the series in (2.1) and 
(2.9) converge rapidly. The convergence is of the same rate as that of (1.2). For 
large values of 1 z 1 the method described above is not attractive. Many terms in 
the series are needed. But there is another important reason. For large values of 
1 z 1, the Bessel functions behave as indicated in (1.11). Hence, if I z I is not small 
the subtraction in (1.3) will again cause a large relative error. This time the loss 
of significant digits cannot easily be avoided. A rough indication of the loss of 
digits, say q, can be obtained from 

Hence, for Re z > 5 at least four digits are lost. 
For the case of real z and v, z > 0, I v ] < 4, the loss of relative accuracy can 

be elaborated somewhat further. In this case KY(z) is positive (see (1.5)). If fO > 0, 
then, as follows from (2.5), (2.6), and (2.7), all terms in (2.1) are positive, and the 
summation in (2.1) is stable. 

But fO is negative if z is large. The equation fO = 0 defines a curve in the (z, v)- 
plane given by 

z(v) = 2[T(l + v)/F(l - v)]l@), 

with z(0) = 1.1229... and z(i) = I. Some computations show ~(4) < z(v) < z(0) 
for -& < v < 4. It follows that if 0 < z < 1, -f < v < 4, KY(z) can be safely 
computed by using (2.1). 

As for Ky+1(z), the situation is more complicated. If fO >, 0, then all pr and fk 
in (2.9) are nonnegative. By using (2.5), (2.6), and (2.7), it follows that for k > 1, 

pk - kfk = (vP~-~ - k2f,-, - kq,-,)/(k2 - v”). 

s8I/I9/3-7 
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If -4 ,< v < 0, then the right-hand side is negative and so all terms in (2.9) 
except p0 are negative. But K,,+,(z) > 0 and, in summing the series, cancellation 
may occur. 

However, for small values of z we have from (1.2), (l.lO), and (2.6), 

K,+,(z) - p. - z-l(v77/sin v7r) Z-,(z). 

So, for small z, p0 dominates the remaining terms in (2.9), which are o(l) for 
z -+ 0. Hence it may be expected that for z sufficiently small, no cancellation in 
(2.9) will occur. 

From numerical experiments it follows that 

for 0 < z < 1 and -) < v < 4. As a consequence, for these values of z and v, 
Ky+l(z) can be safely computed by using (2.9). 

As indicated in Subsection II. 1, if 4 < v < 1, then the functions K,-,(z) and 
K,(z) are computed. K,+,(z) follows then from (see (1.9)) 

K+1(4 = PYzKw + K-l(Z)9 

in which both terms on the right are positive. 

11.3. The computation of the gamma function. Since in the literature no approxi- 
mations for the odd and even parts (with respect to v) of the function l/Q1 - v) 
are available, a description of our method 

The starting point is the expansion 

l/r(v) = f &VI;, 
k=l 

is given here for the case of real v. 

[VI <co. (2.12) 

The first 26 coefficients ck are tabulated in Abramowitz and Stegun [l] (16 digits), 
and the first 41 in Wrench [15] (31 digits). From (2.12) and r(v + 1) = vr(v) 
we easily obtain 

l/r(l - v) = f (-1)” C,+lvn. 
72=0 

(2.13) 

From this representation the odd and even parts may be obtained and so the 
values of r,(v) and rz(v) defined in (2.11). In the Bessel function algorithm we 
need r, and Z’, for -4 <Rev < , 4. To give a satisfactory numerical approxima- 
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tion on the real interval [-3, $1, we expand l/r( 1 - V) in the Chebyshev poly- 
nomials T,(x) = cos(n arccos(x)), 

l/q1 - V) = f (-1)” c,+1 2-“(2V)” = $! a,T,(2v). (2.14) 
?Z=O n=O 

(The notation C’ means that the first term in the series is to be halved.) 
The coefficients a, in (2.14) can be computed by rearranging the Taylor series 

in (2.14). This method is described in Clenshaw [4]. The powers of (2~) are replaced 
by their expansions in Chebyshev polynomials, and the series is rearranged in the 
form C’ a,T,(2~). The first few coefficients a, are given in Table I. A check on 
these coefficients can be performed by evaluating (2.14) for v = 0, $, -3. We must 
have 

$i (-1)” a,, = 1, ii a, = T+/~, zi (-1)” a, = 2n-lp. 

The functions r, and r, defined in (2.11) may now be written as 

and an appropriate summation method (see Clenshaw [4]) gives r, and r, . 

III. The Computation for Large or Moderate Vulues of ) z ( 

For large 1 z 1 we have the well-known asymptotic expansion 

KY(z) - (7r/2z)lj2 e-z jJ (v, m)(--2z)-“, 
WZ=O 

TABLE I 

n %t hl+1 

+1.84374 
-0.07685 
+0.00127 
-0.ooooO 
-O.OOOOO 
+o.ooooO 
-0.ooooo 
-0.ooooO 

05873 00906 -0.28387 65422 76024 
28408 44786 +0.00170 63050 71096 
19271 36655 +0.00007 63095 97586 
49717 36704 -0.OOOOO 08659 20800 
00331 26120 +o.ooooO ooo17 45136 
m2 42310 +o.ooooO oooo0 09161 
oooo0 00170 -0.ooooO oooo0 00034 
oQoo0 ooool 
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where (v, m) is Hankel’s symbol given by 

(v, m) = (m!)-1 I-(+ + v + m)/r(j + v - 172) 
= (Trm!)-’ (- 1)“l cos VT I-($~ + v + 772) I-($ - v + m). (3.1) 

The series diverges for all finite values of 1 z 1, but it can be used very successfully 
if 1 z 1 is large. To give an indication, for real z, z > 15, the asymptotic series can 
be used to give an approximation, which is correct up to 13 significant digits. For 
intermediate values of / z / we have to resort to other techniques. In this section 
we will discuss a method which enables computation of KV(z) for / z I >, 1. 

111.1. The Miller algorithm. We need some properties of the confluent hyper- 
geometric functions. We use the notation of Abramowitz and Stegun [l]. 

The Bessel function K,(z) can be written as 

k;(z) = 7?(2z)y e-TJ(V + 4, 2v + 1, 2z), (3.2) 

where U(u, b, Z) is a confluent hypergeometric function, which for Re z > 0 and 
Re a > 0 may be defined by 

T(a) U(a, 6, z) = Jw e-i"ta-l(l + t)b-o-l dt. 

0 

The function 

k,(z)=(-1)‘“(v,n)U(v+Q+??,2v+1,2z), n = 0, I, 2,.. 

with (v, n) given in (3. l), satisfies the recurrence relation 

k,+,(z) - 4Mz) + do&) = 0, 
with 

a, = [(n - *)’ - v”]/(n” + n), 

The function 

6, = 2(n + z)l(n + I), II = 1, 2,. . . . . (3.6) 

m(z) = qn + v -l- *) ,F,(v + 4 + n; 2v + 1; 2z)/n! 

also satisfies (3.5). Jr@; b; z) is the hypergeometric function defined by 

(3.7) 

(3.8) 
F(b) zn 

I-(b + n) 3 ’ 

(3.3) 

(3.4) 

(3.5) 

The functions k, and yn are two linearly independent solutions of the difference 
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equation (3.5), as follows from the behavior of these solutions for large values of 
n, viz. 

k&) - ~ -l/2 ~0s VT 21/4~-1/2~--~--(1/4) exp[z - 2(2nz)lP], (3.9) 
Y,(Z) - 77 -i/22-v-(a/4,n-i/2z-‘-(1/4)r 2 ( v + 1) exp[z + 2(2n~)‘/~], (3.10) 

kn(z)/yn(z) - 2v+l cos vx exp[-4(2nz)l12]/r(2v + 1). (3.11) 

Formulas (3.9) and (3.10) may be derived from results in Buchholtz [3]. Buchholtz 
derived his results for real z/n by using saddle point techniques. We can show, 
however, by using other methods (see Slater [13] and Temme [14]) that (3.9), 
(3.10), and (3.11) are valid under the restrictions 

n-co, z fixed, z # 0, 1 arg z I < 7r. \ (3.12) 

We will now describe our method of computing k, and k, defined in (3.4). If 
these functions are evaluated then the Bessel functions K, and K,,, can be computed 
from 

K,(z) = 7~l/~(2z)” czko(z), 

The latter equation may be derived from (3.2) and (3.4) and some contiguous 
relations of the confluent hypergeometric functions (cf. Abramowitz and Stegun 
[l, 13.4.16 and 13.4.181). 

The functions k, and k, may be computed with Miller’s algorithm. We use 
Gautschi’s version of this algorithm, the details of which can be found in [5]. As 
normalization relation we use 

f k,(z) = (2~)-‘4/~), 
T&=0 

(3.13) 

which follows from (3.3) and (3.4) and substitution of the integral representation 
of k, in (3.13). 

In Miller’s algorithm a positive integer N is selected and a sequence 
v,“‘, /TN’ 1 >..., &“’ is computed by using (3.5) in backward direction with initial 
values EX1 = 0, I;:’ = 1. By normalizing EI;“’ and E:“) with (3.13), kiNJ and kiN’ 
are computed. Then 

lim ktN’ = k,(z), M-t=0 n = 0, 1. (3.14) 

Using the asymptotic estimates (3.8) and (3.9) we can readily show that the condi- 
tions of theorems in [5] are fulfilled, from which the validity of (3.14) follows. (The 
algorithm can be used for the computation of k, for larger values of n, but here 
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we only need to consider n = 0, 1). In [14] we applied this algorithm for the com- 
putation of ~~(-7) = zk! U(k + 1, 1, z). In fact it may be used for general 
U(a + n, b, z), n = 0, 1,2 ,..., if 1 z I is not too small. 

111.2. Determination of the starting index N. The relative error E of kj,“” with 
respect to k,(z) can be expressed by 

k;“” = k,(z)(l + E), (3.15) 

where E depends on N, z, n, and v. On account of (3.14), I E I is small for large N. 
For numerical applications it is necessary to have an idea how large the starting 
index of the Miller algorithm N has to be, in order to have a satisfactorily small I E 1. 

As in Gautschi [5], the determination of N can be based on asymptotic formulas 
for the functions yn and k, . A more satisfactory approach, however, is pointed 
out by Olver and Sookne [12]. Their method is based on results of Olver in [IO, 1 I]. 
Beginning withy,, = O,p, = 1, Olver computes a solutionp, of (3.5) for IZ = 1,2,... . 
Also computed is a sequence {e,} defined by 

e, = 1, en = ankl , 

where, in our case, a, is given by (3.6), giving 

Next, the quantity 
e, = (--I)” (v, n)/(n + l)!. 

EN = f e&PlcPk+& Nb 1, 
k=N 

is introduced and the selection of the starting index N depends on the construction 
of a bound of EN. 

In order to construct this bound we consider henceforth real values of z and v. 
As remarked in Subsection 1.2, it suffices to consider values of v in [-$, $1. 
Furthermore, we suppose z 3 1. Under these conditions we have b, > 1 + a, , 
from which pntl 3 pn easily follows for n 3 0. Moreover, e, > 0 for n > 0. 
Hence, EN is dominated as follows. 

EN < f p;‘e,, = nTT-l cos VT f p;‘r(* + v + n) r(+ - v + n)/[n! (n + I)!]. 
n=N 7l=N (3.16) 

The series can be bounded by using the following lemma. 

LEMMA. Let a, b, and z be real numbers such that b > a + 1 > 0 and z > 0. 
Then 

r(z + a)/r(z + b) < z+~. 
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Proof. From the integral (cf. [l, 6.2.11) 

T(b - a) F(z + u)/zyz + b) = LW e-(z+a+l)tfb--a-l[(l _ e-t)/#+a-1 & 

we obtain, by using e-(“+l)t d 1, (1 - eet)/t d 1 (t 3 O), 

r(b - a) r(z + a)/r(z + b) < Irn e-V-~--l dt, 
0 

from which the lemma follows. 1 

Applying the lemma to (3.16), we obtain 

EN < w-l cos v7r f l/(nZp,2). 
Tl-N 

(3.17) 

The function pn is a solution of (3.5). It can be written as a linear combination of 
yn and k, ; pn and y, have for large n the same asymptotic behavior up to a factor 
independent of n. Considering (3.10) and comparing the series in (3.17) with the 
integral 

s m n-l exp[-4(2nz)1/2] dn, 
N 

we observe that it is plausible to replace (3.17) by 

EN < 2+ cos VT (2z)-l1’2 N-3/2p;2. (3.18) 

To the first order of small quantities, the relative error in the Miller algorithm 
is in our case (cf. Olver [lo, (11.1 l)]) 

uN = EN f Pn + 5 p,En. (3.19) 
?I=0 n=N+l 

Hence, by using (3.18) and the same argumentation for both series in (3.19) as 
was used for (3.17), we obtain for u,,, the bound 

n-1z-1 cos VT N-‘p;;l. (3.20) 

The least value of N > 1 for which (3.20) is smaller than the prescribed relative 
accuracy will be taken as the starting index for the Miller algorithm. 

Remark. It may be noted that (3.20) vanishes for v = &$. As follows from 
(3.4) and (3.1), the functions k, also vanish for n > 1, while k,(z) equals 1 or l/(22) 
if v = -3 or v = +$, respectively. If the choice of N is based upon (3.20), small 
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TABLE II 

a ePs 5.0,,-06 5.0,,-09 5.0,&2 

0.0 d0 
dl 

(nv NJ 

1.4,,-06 6.11,-10 

I .410-06 6.1,,-10 

(6,W (8350) 

0.2 d0 1.6,,-06 

dl 1.6,,-06 

(n, NJ (621) 

0.4 d0 
dl 

(n, N> 

1.6,,-06 5.210-10 

1.6,,-06 5.2,,-10 

(6, 18) (8944) 

0.6 d0 
dl 

(n, N) 

1.6,&6 

1.6,,-06 

(7, 18) 

0.8 d0 1.6,,-06 

dl 1.6,,-06 

(n, N) (621) 

1.0 d0 
dl 

(n, N) 

1.4&6 

1.4,,-06 

(622) 

7.410-l 3 8.4,,-15 

7.1*,13 3.510-14 

(9, 89) (10, 122) 

5.710-10 6.6,,,-13 4.2,,-15 

5.710-10 6.410-13 2.01,-14 

(8-49) (9,W (10, 120) 

6.010-13 1.61,-14 

5.8,0-13 2.5,,-14 

(9,811 (10, 112) 

5.210-10 6.0,,-13 

5.21#J-10 5.910-13 

(8544) (9,811 

5.7,,-10 6.61o-13 

5.710-10 6.5,,-13 

(8,491 (9,88) 

6.110-10 6.810-13 

6.1,,-10 6.8,,-13 

(8950) (9, 89) 

7.410-l 5 

1.410-14 

(10, 112) 

o.o,,+oo 

1.7,,-14 

(10, 120) 

7.1,,-14 

7.0,,-14 

(10, 122) 

5.010-14 

real procedure recip gamma(x, odd, ecen); value x; real x, odd, ewn; 
begin integer i; real a&z, befa, x2; array b[l:12]; 

b[ l]:== -.28387 65422 76024; b[ 2]:= -.07685 28408 44786; 
b[ 3]:= +.00170 63050 71096; 6[ 4]:= +.00127 19271 36655; 
b[ 51: = +.00007 63095 97586; b[ 61: = -.OOOOO 49717 36704; 
6[ 7]:= -.OOOOO 08659 20800; 6[ 8]:= -.OOOOO 00331 26120; 
b[ 9]:= +.OOOOO 00017 45136; b[lO]:= +.00000 00002 42310; 
b[ll]:= +.OOOOO 00000 09161; 6[12]:= --.OOOOO 00000 00170; 
x2:= x x x x 8; alfa:= -.OOOCMl OOOOOOOOO1; bera:= 0; 
fori:= 12step -2until2do 
begin beta:= -(a& x 2 + bera); a&z:= -beta x x2 - arfa + b[i] end; 
ewn:= (beta/2 + alfa) x x2 - alfa + .92187 02936 50453; 
alfa:= -.OOWO 00000 00034; beta:= 0; 
for i:= 11 step -2 until 1 do 
begin beta:= -(aZfa X 2 + beta); a&z:= -beta X x2 - alfa + b[i] eml; 
odd:= (alfa + beta) x 2; recip gamma: =odd x x + even 

end recip gamma; 
real procedure &h(x); value x; real x; 



MODIFIED BESSEL FUNCTION 

Table II (continued) 

besin real ax, Y; 
ax: = ubs(x); 
if ax -z .3 then 
beginy:=ifux < .l thenx x xelsex x x/9; 

x:= (((l/5040 x y + l/120) x y + l/6) x y + 1) x x; 
sinh:= ifux < .l thenxelsex x (1 +4 x x x x/27) 

end else 
begin ax:= exp(ux); s&h:= sign(x) x .5 x (ax-l/ax) end 

end siizh; 

procedure bessku(u, x, eps, ku, kul); value a, x, eps; real a, x, eps, ku, kul ; 
begin real al, b, c, d, e, f, g, h, p. pi, q, s; integer n, na; boolean ret, reu; 

pi:= 4 X arcfun (1); 
reu:= a <--.5;ifreothenu:= --a-l; 
ret:= a > .5; if ret then begin nu:== entier(u+.5); a:= a - nu end; 
if a = -.5 thenf:= g:= sqr’rt(pi/x/2) x exp(-x) else 
if x < 1 then 
begin b:= x/2; d:= --In(b); e:= u x d; c: = a x pi; 

c: = if ub.s(x) < 
s: = if ribs(e) < l~~~~~~~~ 1’ ettZsZiJ$; 
e: =z exp(e); al : = (e + l,ie)/2; g: = recip gummu(u, p, q) X e; 
ku:=f:= c x (p x al + q x s x d);e:= a x a; 
p:== .5 x g x c; q:= .5jg; c:= 1; d:= b x b; kul:= p; 
for n:- 1, n + 1 while h/ku + ubs(g)/kal > eps do 
begh~f:= (f’ x n + p + q)/(n x n - e); c: = c x d/n; 

p:= pl(n - a); q:= q/(n + u);g:== c x (p - n x f); 
/I:= c x f; ku:= ku + h; kul:= kul + g 

end ; 
f:= ku;g:= kal/b 

end else 
begin c: = .25 - a x a; g:= 1; f: = 0; e: = x x cos(u x pi)/pi/eps; 

forn:=l,n+lwhilehxn<edo 
hegin h:= (2 x (n + x) x g - (n - 1 + c/n) x f),I(n + 1); 

f:=g;g:= h 
end ; 
p:= q:=f/g; b:= x + x; e:= b - 2; 
forn:=n,n-lwbiIen>Odo 
hegin p: = (n - 1 + c/n)/(e + (n + 1) X (2 - p)); q: = p x (q + 1) end; 
f: = sqrt(pi/b) x exp(-x)/(1 + q); g: = f x (a + x + .5 - p)/x 
end ; 

if ret then 
hegbl x:= 2:x; 

for n:= 1 step 1 until nu do 
heginh:=f+(u+n) xxxg;f:=g;g:=hend 

end ; 
if rev then be& kal : = f, ku: =g end eke 
beginku:=f; kul:= gend 

end bessku: 

335 



336 N. M. TEMME 

values of N will result in v-neighbourhoods of ii. This phenomenon will not 
disturb the actual algorithm. As can be verified (see the ALGOL procedure be&a), 
in the limit v = &$ the correct values are computed. 

IV. ALGOL 60 Procedures 

The algorithms described in Sections I1 and III are given as an ALGOL 60 
procedure for real values of the parameters. For convenience we write z = x and 
v = a. The procedure besska computes for x > 0 and a E R the Bessel functions 
K,(x) and K,+,(x); besska makes use of two nonlocal procedures sinh and recip- 
gamma. The latter computes l/r(l - a) and the functions r,(a) and r,(u) defined 
in (2.11) for -4 < a < 4. 

By choosing eps the procedure besska can be used up to any (relative) tolerance. 
The two procedures recipgamma and sinh are supplied with fixed relative accuracy 
(about lo-14). By only modifying these two procedures, the set of three procedures 
presented here can be adapted to any computer and to any accuracy. 

The procedures are tested on the CD CYBER 73 of SARA, Amsterdam. For 

x* = 1 f 2-4’ 

we computed the numerical values of the expressions 

In Table II we give d,, , dl , the maximum number of terms (n) used in (2.1), and 
the starting index N for the Miller algorithm. 
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